Информационная безопасность


Немного теории обнаружения аномалий - часть 2


  1. сложение произвольной строки матрицы с линейной комбинацией других строк;
  2. перестановка строк;
  3. перестановка столбцов.

Метод построения матрицы R аналогичен методу Жордана-Гаусса, но при этом обладает следующими особенностями. Во-первых, осуществляется двойной обход алгоритма: сначала в прямом (сверху вниз), а затем в обратном (снизу вверх) направлении. Во-вторых, перестановка столбцов производится в тех случаях, когда ненулевое значение ячейки в пределах первых k столбцов (являющееся не первым ненулевым по счету в строке) невозможно привести к нулю из-за отсутствия в данном столбце иных ненулевых членов.

Заметим, что матрица R идентична матрице S за исключением возможных перестановок столбцов, то есть справедливо выражение

5

где T - квадратная перестановочная матрица размерности nґn, соответствующая выполненным на этапе построения R перестановкам столбцов в S. Данный результат обусловлен характером специфичных для предметной области преобразований, выполняемых над матрицей S в процессе построения матрицы R.

Таким образом, выражение (5) позволяет использовать матрицу R вместо матрицы S для вывода инвариантов подобия семантически корректных вычислительных процессов в распределенных вычислительных системах на основе TCP/IP. Для наличия среди первых k значений вектора-решения системы ограничений размерности i-й компоненты, тождественно равной нулю, необходимо и достаточно, чтобы в i-й строке матрицы C в формуле (4) все элементы были равны нулю. Действительно, пусть в i-й строке матрицы C существует хотя бы один ненулевой элемент (например, в позиции j ). Тогда, установив равными нулю все (n-k) последних переменных за исключением (k+j)-й, получим следующее равенство:

6

из которого следует, что в данном случае переменная xi не равна нулю. При равенстве нулю всех элементов i-й строки матрицы C получаем следующее равенство:

7

из которого получаем искомое тождество:

8

9

Переменные, соответствующие первым k столбцам матрицы R, являются базисными (независимыми) в данной системе инвариантов подобия (размерностей).


- Начало -  - Назад -  - Вперед -



Книжный магазин